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S~ SuD•iXRY

A generalization of Kuhn's simple assiganment problem is considered:

There are m men and n tasks given with each man qualified for

certain of the tasks. The output from each task is given as a concave

function of the number of qualified men assigned to it. Find an assign-

ment of men to tasks, perhaps more than one man to a task, so as to

maximize total output0

An algorithm for solving this general problem is given in which

transfers like those used by Kuhn on the simple problem are selected

using a node-labeling procedure on a related network. The algorithm

yields for every k, l<k<m, an optimal assignment of the first k
, /

men only, employing a single transfer to increase k by one. Several

special forms of the generalized problem are considered including a

target-assignment problem which A. S. Manne has formulated as a linear

prograen. I

tJ



V1. INTRODUCTION

In solving the general (linear) assignment problem, Kuhn considers

a simole assignment problem [2; p. 83], in which it is required to assign

m men to n tasks,one to each task, so that a maximum number of men

are assigned to tasks for which they qualify. In treating the simple

problem, he considers partial assignments in which each man is either

unassigned or assigned to a task for which he qualifies and shows that

a sufficient number of transfers transform any partial assignment into

an optimal one. A transfer consists of a "bumping" operation in which

an unassigned man is assigned to a task for which he qualifies, releasing

a second man to takea different task for which he qualifies, releasing a

third, etc., ending with a k man who is moved to an unoccupied task.

In 22 wo introduce a generalization of the simple assignment problemn,

a mnltiole-assignment problem, in which m men are to be assigned to n

tasks, perhaps mc.e t.un one per task0  We assume the output from a task

is a concave function of the number of qualified men assigned to it and

ask for an assignment which maximizes total output. In §. we describe an

algorithm for the multiple-assignment problem utilizi, g transfers and

show it yields an optimal assignment. Finally, in §4 we consider three

special cases of the multiple-assignment probh 3,m: the simple assignment

problem itself, an assignment problem with priorities on the tasks, and

a target-assignment problem described by Manne L31.

§2. DEFINITIONS AND PRELIMINARIIS

A formal statement of the multiple-assignment problem is contained

in the following three definitions:
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THE QUALIFICATION MATRIX, Q. An n X m matrix Q = (qij is a

qualification matrix if it is a (0,1)-matrix (a matrix with entries

C or 1 only) without zero columns.

THE ASSIGWMENT MATRIX, X. An n X m matrix X = IX3ij is an assignz.ent

for the n X m qualification matrix Q if it is a (0,1)-matrix with

exactly one nonzero entry per column and

(1) X.. = 0 whenever qij 0.

THE MULTIPLE-ASSIGNMENT PROBLE4, [Q,].3. An n X m qualification matrix

Q and a set of n concave functions fi(k), 1 • i • n, defined for

integral k, are given. An assignment X for Q is to be found which

maximizes

(2) p(X) = ZUf.(7 x..).

In terms of men and tasks, q.j = 1 if and only if man j qualifies

for task i, x. , = 1 if and only if man j is assigned to task i,
13

ox. . is the number of men assigned to task i, and f.(k) is the output
3 1j i

from task i if k (qualified) men are assigned to it.

The formulation stated assumes each man is qualified for at least

one task, each man is assigned to some task, and no man is assigned to

a task for which he does not qualify. These are not material restrictions,

If an application should arise in which a man need not be assigned to a

task for which he qualifies, an additional, idle task may be introduced

for which all men qualify but for which the output is zero. Also there

is no essential restriction in supposing the values f (k) are defined

for all integers k, though clearly only the values , fi (k) for k from
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0 to v- can have any effect on the solution.

For convenience in discussing the problem, we define

(3) r.(Z) Z .z..

for any matrix Z = z.., .and

i(k) = fi(k+l) - fi(k), 1 • i • n.

Also, if X is an assignment for a problem [Q,fl] we define

=i(rxi(x))

and

.(r MX) - 1)

which are respectively the gain and loss from adding a man to or

(provided ri(X) 0 0) removing a man from task i. Note that the

concavity of the f. is equivalent to the condition
1

(4) 5i(k) 6 i (kI) if k < k*.

Given any two assignments X anc3 Y for a problem [Q,fi], their

difference, D = Y - X, may be consid :ed the incidence matrix of a

directed, loopless graph, G, with a node for each row of D. and an

arc for each nonzero column of D. The arc corresponding to the nonzero

column j of D starts at node i' and ends at node i, where

di*j = -1, dij = 1.

A path of length k from node a to node b of Q is a sequence

of k arcs visiting in succession k+l distinct nodes starting with
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a and ending with b. A circuit is a path except that the starting

and ending nodes only are identical. We will say a collection of

matrices of dimension n X m are disjoint if for each j, 1 < j _ m,

at most one matrix has a nonzero entry in column j. It will be

convenient to refer to the incidence matrices of graphs using graph

terminology. Thus, P below is a path of length 4 from row 1 to row

4, C is a circuit of length 3, and P and C are disjoint.

-1 0 00 000 0 0 0 0 0 1 -1

0 -I 0 0 1 0 0 0 0 0 0 0 0 0

P= 0 0 0 1 -1 0 0 C 0 0 1 0 0 -1 0

0 1 0 0 0 0 0 0 0 -i 1 0 0 1

100-1 0 0 0 0 00000 0

The proofs of the following lemmas are not difficult and are omitted.

LEMMA 1. If X and Y are assiginnents for [Q,,f.] and P = Y - X

is a path from a to b, then

(Y)- W +tM) -

LEMMA 2. If X and Y are assignments for Q, the difference

D : Y - X can be written as a finite sum

(5) D = P1 + P2 + " + C 1 + C2 +

where the P. and G. are disjoint matrices, the C. are circuits,
1 2 .

and the P. are paths with a maximal property, namely:

(6) No path ends at a node (row) where another path starts.

Moreover, if E is an arbitrary sum of paths and circuits in (5),

then X+E is an assignment for Q.
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§3. THE ALGORITHM

In order to simplif.y the statement of the algorithm for solving

the multiple-assignment problem, we introduce the notion of a special

task. Task s in a multiple-assignment problem (Q,fI] is a special

task if for some y

(7) f (k) = k y

i.e. if f is linear, and all men qualify for task s. In particular,

an idle task is a special task.

Given any problem [Q~fe] which does not already contain a special

task we may introduce one by adding a row of iTs to Q and defining

the corresponding output function by (7). It is clear that if y is

chosen sufficiently negative, in particular ifý

(8) Y < i (k), i / 9, 0 < k <rm,

then an optimal assignment for the augmented problem will assign no

men to the special task and therefore will (on deletion of row s)

be an optimal assignment for the original problem.

The following lemna provides the foundation for the algorithm.

LEMMA 4. Suppose Q is an n x m qualification matrix and

[Q,f.) is a multiple-assignment problem with special task s. Let

Q, < < m, be the qualification matrix equal to Q in the first

k columns and in row s, but zero elsewhere. Suppose for some k,

1 < k < m, that Xk is an optimal assignment for Qk-l fI. Let

X be chosen from the optimal assignments for [Qk,f so as to

minimize the number of arcs (nonzero columns) of D -



6

Then D = 0 or D is a path starting at s.

Proof. If D 0, there is nothing to prove. If D is not

the zero matrix, it may be decomposed as in Lenma 2. Since

r.(%0 1 ) = 0,

it follows that

r (Z iP r) = r (D)rr(D

or

+ P..

But Z.P. would consist of fewer arcs than D if the decomposition, (5),

involved any circuits. Hence, by the choice of X, D = Z. p.i J

Suppose (5) includes a path P, from a to b, which does not

involve column k. Let E = D - P. We do not exclude the possibility

E 0. By Lemma 2, Xk-l + E is an assignment for [ but

X k-1 + E + P is optimal, so
(Xk-1 F

(9) (xk-l + E + r) + 0.

In fact, by the choice of X*, equality cannot hold in (9). Similarly

(10) ( + p) Xk-i) <

since xk-1 + P f an assignment for [Q k-1 f as well as for [Qkf

By Lemma 1, (9) (with inequality) and (10) imply

+-k-J.k

b+(X + E) - 6(Xk-1 + E) > 0

(11)

6 (Xk-1) 6- Xk-) < 0b a
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Since by (6) no path of E ends at a or begins at b, it follows

rb(Xk-i + E) _ rb(xk-i)
(12)

ra-(x + E) ra(x ),raa

which by concavity, as given in (4), implies

+( 1k-i ( + E) b +(Xk-)

k-I +,
ý-x + B) Ž C(x1 ~)

a a

But equations (1,) and (13) are incompatible. Hence every path in (5)

must involve column k, and as (5) is a disjoint sum, D is itself a

paith involving colomn k. t

Suppose now that D does not start at the special task, i.e. a s.

Since D involves column k, it visits s but does not end there. D,

then, may be written as a sum of two disjoint paths: a from a to s,

which does not involve column k, and T from s to b. We would like

to repeat the arguments of the preceding paragraph with D = R + T in

place of (5) and R in place of P. Umfortunately, R and T do not

satisfy (6). However, (12) is violated only for the special task, for

which (13) holds anyway. The rest of the argument applies, leading to

a contradiction. This proves tho lemma.

From the foregoing and Lemma 1, the following theorem is easily

proven. As mentioned before, there is no restriction in supposing

[Qfi I involves a special task.

THEOREM 1. Suppose [Q,fi. is a IrIultiple-assignment problem with

I
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special task s. Let 0., 0 • I <K m, be as defined in Lemma 4. Suppose

X is Q and for each k, 1 • k < m, Xk is chosen from among the

assignments for Q0k which differ from Xk-1 by a path from row s to

row b (Xk-1 is considered such an assignment with b = s) so as toS+ , k- i , kk

maximize b( b ). Then each A is an optimal assignment for [Qk,fi]

and 'F is an optimal assignment for [Q,f].

In order to apply Theorem 1 in pract ce, a method must be available

kfor choosing row b for each k and constructing Xk . For each k,

Qk and Xk-1 may be thought of as defining a directed graph with rows

of Q k as vertices and an arc from row i* to row i for each triple,

(i,i*tj), for which

(1&) k-i k-i k-1 iS qi:,j q ij

Each are indicates the possibility of shifting man j j • k, from task

iP to task i. Each path in the graph so constructed corresponds exactly

to a path P (in the matrix sense) for which Xk-I + P is an assignment

for Q . If a path starts at s it corresponds to what Kuhn terms a

transfer.

A familiar procedure for constructing paths in networks (see, for

example, Ford and Fulkerson [1, pp. 17-18]) can be adapted for choosing

b and the path Xk - X k- as follows: Initially, all rows are

unlabeled except row s, which has label (0,0). For any (i,it j)

satisfying (14) such that row iPl is labeled but row i is not, the

label (i',j) is attached to row i. When no more rows can be

labeled, a row, b, is chosen from the labeled rows so as to maximize



+k-lXk-1io k.+(X If b = s, X is taken for X . If b / s, a finite

secuence of labels,

(15)(ill), •_2 J2), ... ,ý (itJr) (0,0)

4s generated starting with the label of row i = b according to the

(i h) i By the nature of the labeling

process, all ih are distinct, as are all jh" In this case, X is

formed from X • by moving the 1 in column 4h of X k- from row

i to row i for each h, i < h < t. In practice Xk can be formed

at the time (15) is generated.

Regardless of the sequence of labeling, the same set of rows are

eventually labeled. 'iso, any optimal assignment Xk for [Qk,fi] which

differs from X k- by a path from s can be obtained by suitable

labeling order and choice of b maximizing b(Xi).

In practice, a row may be given the label j instead of (i',j) since

i" can be determined from XIl. Also, the backtrack, (15), may be

started as soon as a row, b, is labeled for which in some .Tay it is known

6 + ( k-1Max + (X)kS= = .a<n a

§4- THREE EXPŽ4PLES

in this section, we consider special cases and applications of the

multiple-assignment problem.

We note first that the simple assignment problem is a special case

of the multiple problem. The qualifications of the m men in a simple

problem determine an m x m square qualification matrix Q to which may

be added an m+lSt row consisting of l's Lo obtain an (m+l) x m

qualification matrix Q*% If we define
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f. (0) =0, < i < m

f (k) 1 , i< i < M, k ý! 11

f m+l(k) k

then [Qr,f] is a multiple-assignment problem with special task m + 1.

Application of the algorithm of Theorem I to [Q- fi] for different

values of y will yield different optimal assignments, X(y). However,

since the transfers (paths) X - Xk-) employed in executing the algorithm

if 0 < y < 1 would be suitable in each case as transfers if y = 0, it

Ifollows that an assignment X(7), say, is also an optimal assignment

with y 0 O. Since X(l) must assign at most one man to any task except

the m+l st, it is clear it provides an optimal partial assignment for

the simple assigrment when men in the m+lst task are considered unassigned.

If labeling is discontinued as soon as a row, b, with +(x-l) = 1 is

labeled, the multiple-assignment algorithm is essentially the one given by Kuhn.

Consider next a multiple-assigrLment problem [Q,fi] (without idle

task) such that

fi (k) c.k , k m.

(16)
fi (k) c imi k > m.

and

(17) c >> c2 >> >> Cn > 0.

Provided the inequalities (17) are sufficiently great, this problem

is equivalent to finding a best assignment of men to prioritized tasks

where task i has a quota of m, men. The usual difficulty in achieving
1

a solution to a priority-type problem using a system of inequalities



such as (17) is the extreme range required in the size of the ci.

Here, however, we find:

THEORS4 2. If X is an optimal assignment for [Qf 1] where the

f. are given by (16), and1

(18) cI > c2 > "'" > cn > 0,

thon X is also optimal for any choice of the c, satisfying
1

(19) lc 2 >"' Cn>0-

Proof. This result is immediate on noting that the values Zt Xk-i)

which determine permissible transfers in the algorithm of Theorem I are

exactly the quantities in (18) and hence the sane transfers are permissible

if the c.3s satisfy (19).
1

This theorem has two consequences of practical significance. First,

it is sufficient for solving the priority problem to use, say, the first

n integers for the c,, and second, nothing is sacrificed by putting

priorities on the tasks -- an optimal assignment with priorities is also

an optimal assignment without them, i.e. with ci = 1, 1 < i < n.

Finally, we will show that a target-assignment problem considered

by Manne [3] can be handled efficiently as a multiple-assignment problem.

Suppose m guns are available to direct against n targets. Some

guns cannot be directed to certain targets, but all guns which can be

directed against a specific target are equally effective. Each target

i, < • i < n, has a value a. and the expected value of this target1
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after a specified time of bombardment is

m(20) a. = a. n (1 - Pix.j),
1 i j=l 113

where pi is the probability that one gun alone will destroy the

target and x is the probability (after the manner of game-theoretic

strategies) that gun j is t"o be directed at target i. It is desired

to choose the x.., subject to

0•!x..Kl, li!i•, l<'<m,

0< x. < i <l j 1 <n,
i ij j M

and the restriction that x.. = 0 if gun j cannot be directed againstIJ

target i, so as to minimize A = Za.. A little thought shows that for

each j, A is linear in the variables x1 jx 2 j,...,x . and hence

there is no essential reswriotion in supposing the x.. are integral. 1

If we look only at integral assignments, (20) may be replaced by

X.. Z.x..
(21) a. nj( - pi) a(l-p) 1

It is clear now that the problem is a multiple-assignment problem if we

set

f(k) = ai[l -(l - p kI

since f. (k), the expected loss in value of target i under fire from1

k guns, is concave in k.

1 This is a point which Manne apparently misses in his discussion of

the problem. There is a question whether (21) ought properly to be used

in place of (20) with x.. being the portion of time gun j is directed

at target i. However, it is not our aim to compare models here.
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Manne shows that the problem (with assumption of integral assignments)

is a linear program of the transportation type. It might be asked if the

speed of algorithms for solving transportation linear programs makes

ManneTs formulation competitive with the algorithm of Section 3. The

answer seems to be 'no' for the following reason: The linear program

is highly degenerate so -that many pivots are required before one is found

which decreases the objective. The pivots whico do decrease the objective,

however, correspond roughly to improving transfers in the multiple-

assignment algorithm.
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